Homogenization of degenerate cross-diffusion systems
نویسندگان
چکیده
منابع مشابه
Homogenization of locally stationary diffusions with possibly degenerate diffusion matrix
This paper deals with homogenization of second order divergence form parabolic operators with locally stationary coefficients. Roughly speaking, locally stationary coefficients have two evolution scales: both an almost constant microscopic one and a smoothly varying macroscopic one. The homogenization procedure aims to give a macroscopic approximation that takes into account the microscopic het...
متن کاملHomogenization of periodic linear degenerate PDEs
It is well-known under the name of ‘periodic homogenization’ that, under a centering condition of the drift, a periodic diffusion process on R converges, under diffusive rescaling, to a d-dimensional Brownian motion. Existing proofs of this result all rely on uniform ellipticity or hypoellipticity assumptions on the diffusion. In this paper, we considerably weaken these assumptions in order to ...
متن کاملHomogenization of periodic semilinear parabolic degenerate PDEs
In this paper a second order semilinear parabolic PDE with rapidly oscillating coefficients is homogenized. The novelty of our result lies in the fact that we allow the second order part of the differential operator to be degenerate in some part of Rd . Our fully probabilistic method is based on the deep connection between PDEs and BSDEs and the weak convergence of a class of diffusion processe...
متن کاملThe Regularity of General Parabolic Systems with Degenerate Diffusion
The aim of the talk is twofold. On one hand we want to present a new technique called p-caloric approximation, which is a proper generalization of the classical compactness methods first developed by DeGiorgi with his Harmonic Approximation Lemma. This last result, initially introduced in the setting of Geometric Measure Theory to prove the regularity of minimal surfaces, is nowadays a classica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2019
ISSN: 0022-0396
DOI: 10.1016/j.jde.2019.05.036